Synopsis: Differential geometry is the study of curved spaces using the techniques of calculus. It is a mainstay of undergraduate mathematics education and a cornerstone of modern geometry. It is also the language used by Einstein to express general relativity, and so is an essential tool for astronomers and theoretical physicists. This introductory textbook originates from a popular course given to third year students at Durham University for over twenty years, first by the late L. M. Woodward and later by John Bolton (and others). It provides a thorough introduction by focusing on the beginnings of the subject as studied by Gauss: curves and surfaces in Euclidean space. While the main topics are the classics of differential geometry - the definition and geometric meaning of Gaussian curvature, the Theorema Egregium, geodesics, and the Gauss–Bonnet Theorem - the treatment is modern and student-friendly, taking direct routes to explain, prove and apply the main results. It includes many exercises to test students' understanding of the material, and ends with a supplementary chapter on minimal surfaces that could be used as an extension towards advanced courses or as a source of student projects..
Fusce posuere, tellus nec posuere eleifend, quam nunc tincidunt dolor, a gravida nisi eros nec felis. Quisque ac dui augue. Etiam sed sapien eget arcu tristique convallis a sit amet massa. Etiam nec lacus placerat, egestas nunc quis, ullamcorper sapien. Ut vehicula eleifend purus. Integer posuere velit vel ex laoreet elementum. Nam aliquam vel quam id lacinia.
Sed pulvinar mi ut quam efficitur, sed eleifend dolor sollicitudin. Nam nec vestibulum eros. Nullam aliquet id odio eu luctus. Nulla facilisis semper facilisis. Maecenas in turpis in nisi gravida porttitor id eget arcu. Maecenas sollicitudin metus a magna condimentum, sit amet scelerisque orci eleifend. Pellentesque eu risus placerat, facilisis ante a, interdum odio. Quisque viverra lobortis enim, ac ullamcorper nibh tristique non. Donec posuere dapibus nisi, et porttitor lectus pharetra eu. Ut facilisis nunc ex, eu molestie metus blandit rutrum. Praesent nec lacinia est, sit amet dictum augue. Phasellus tincidunt justo id consequat egestas. Ut mattis ultrices orci, sed rhoncus ante accumsan quis.